358 research outputs found

    A survey of methods for deciding whether a reaction network is multistationary

    Full text link
    Which reaction networks, when taken with mass-action kinetics, have the capacity for multiple steady states? There is no complete answer to this question, but over the last 40 years various criteria have been developed that can answer this question in certain cases. This work surveys these developments, with an emphasis on recent results that connect the capacity for multistationarity of one network to that of another. In this latter setting, we consider a network NN that is embedded in a larger network GG, which means that NN is obtained from GG by removing some subsets of chemical species and reactions. This embedding relation is a significant generalization of the subnetwork relation. For arbitrary networks, it is not true that if NN is embedded in GG, then the steady states of NN lift to GG. Nonetheless, this does hold for certain classes of networks; one such class is that of fully open networks. This motivates the search for embedding-minimal multistationary networks: those networks which admit multiple steady states but no proper, embedded networks admit multiple steady states. We present results about such minimal networks, including several new constructions of infinite families of these networks

    A global convergence result for processive multisite phosphorylation systems

    Full text link
    Multisite phosphorylation plays an important role in intracellular signaling. There has been much recent work aimed at understanding the dynamics of such systems when the phosphorylation/dephosphorylation mechanism is distributive, that is, when the binding of a substrate and an enzyme molecule results in addition or removal of a single phosphate group and repeated binding therefore is required for multisite phosphorylation. In particular, such systems admit bistability. Here we analyze a different class of multisite systems, in which the binding of a substrate and an enzyme molecule results in addition or removal of phosphate groups at all phosphorylation sites. That is, we consider systems in which the mechanism is processive, rather than distributive. We show that in contrast with distributive systems, processive systems modeled with mass-action kinetics do not admit bistability and, moreover, exhibit rigid dynamics: each invariant set contains a unique equilibrium, which is a global attractor. Additionally, we obtain a monomial parametrization of the steady states. Our proofs rely on a technique of Johnston for using "translated" networks to study systems with "toric steady states", recently given sign conditions for injectivity of polynomial maps, and a result from monotone systems theory due to Angeli and Sontag.Comment: 23 pages; substantial revisio
    • …
    corecore